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Chapter 5. Geometrical Symmetry 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(2005), Chap. 3, and Atkins and Friedman, Chap. 5. 

5.1 Symmetry Operations 
We have already encountered many operators that can act on a quantum mechanical 
system (or any kind of system for that matter). Sometimes the operator will transform the 
state of the system, but it may also happen that it will leave it unaltered in the case where 
the state corresponds to an eigenvector of the operator. The latter situation happens when 
the operator in question is a so-called symmetry operator. This concept can be extended 
to other situations. We will consider in Chapter 6 sets of symmetry operations that leave 
the Hamiltonian of a system unchanged. Alternatively, one can investigate ensembles of 
operations that leave the geometrical shape of a system or an object (e.g., a molecule at 
equilibrium) unaffected. These are the types of operators with which we are concerned in 
this chapter.  
As we are concerned with rigid objects of different geometrical shapes anchored at a 
given point (the centre of symmetry), we do not take into account any possible 
translational symmetry and only consider symmetry operators that compose the so-called 
point groups (see below). There are five types of such operators that can leave the 
geometrical appearance of objects unchanged, with five corresponding kinds of 
symmetry elements. An element either is a point, a line, or a plane with respect to which 
the symmetry operation is effected. The different operations and elements are listed in 
Table 5-1. 

Table 5-1 – The five type of symmetry operations and elements. 

Operation Description Element 
E   The identity operation The object itself 
Cn  An n -fold rotation, a rotation by 2! n  

about an axis of symmetry 
The axis of symmetry 

!  A reflection in a mirror plane The plane of mirror symmetry 
i  An inversion through a centre of symmetry The centre of symmetry 
Sn  An n -fold improper rotation about an 

axis of improper rotation 
The axis of improper rotation 

 
An object, or a molecule, can have more than one axis of symmetry. For example, a 
molecule such as the H3

+  ion has one three-fold axis of symmetry (C3 ) perpendicular to 
the plane of the molecule, and three two-fold axes (C2 ) going through one nucleus and 
the centre of symmetry (see Figure 5-1). In a case such as this one, the axis associated 
with the operation Cn  of largest value n  (C3  in this case) is called the principal axis. An 
n-fold  symmetry axis will generate n !1( )  rotations  Cn , Cn

2 ,…, Cn
n!1 . A rotation Cn

k  is 
right-handed in the usual sense (i.e., the right thumb points in the direction of the 
corresponding symmetry axis and the rotation sense follows the other fingers). 
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Figure 5-1 – The H3
+  ion (allowing for the projection) with its symmetries and symmetry 

elements. There is one three-fold axis of symmetry C3  (the principal axis), three two-fold 
axes C2 , and three mirror or reflection planes ! v ; other symmetry operations are 
discussed in the text. Note that all the symmetry elements intersect at one point; hence the 
name point groups.  

As is apparent from Figure 5-1, the H3
+  ion also possesses three mirror (or reflection) 

planes denoted by ! v  (other symmetry operations for this molecule will be discussed 
later). A mirror plane is called a vertical plane ! v  when it contains the principal axis, 
and it is called a horizontal plane ! h  when it is perpendicular to the principal axis. A 
dihedral plane ! d  is a vertical plane that bissects two C2  axes that are perpendicular to 
the principal axis.  
The inversion i  operation consists of taking each point through the centre of symmetry to 
an equal distance in the opposite direction. The H3

+  ion is obviously not symmetric under 
this transformation, as the inverted position of a given nucleus is not the original position 
of another nucleus composing the molecule. 
An improper rotation Sn  is the composite of a Cn  rotation followed by a horizontal 
reflection! h  in a plane perpendicular to the n -fold axis, or vice-versa. That is,  
 
 Sn = Cn! h = ! hCn .  (5.1) 
 
It is often the case (specifically when n  is even) that neither of the latter two operators 
alone will be a symmetry operation, but their aforementioned combination will be. The 
reader should verify, for example, that the methane molecule (CH4 ) possesses three S4  
axes but no C4  and ! h  operators. It can be verified that the improper rotations S1  and S2  
are equivalent to the horizontal reflection and inversion operations, respectively.  
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5.2 The Classification of Molecules through Point Groups 
Upon studying a molecule such as the H3

+  ion of Figure 5-1, it will be advantageous to 
list all of its symmetry operations into an ensemble. When this is accomplished, for any 
molecule, it is found that the resulting ensemble can be associated with the so-called 
point group to which the molecule “belongs”. The different point groups are often 
identified with their dominant symmetry features, as follows 

1. The groups C1, Cs , and Ci . These groups respectively consist of the identity E  
alone, the identity and a reflection ! , and the identity and the inversion i . 

2. The groups Cn . These groups consist of the identity and an n-fold  rotation. 
3. The groups Cnv . Each of these groups contains the elements of the corresponding Cn  

group, as well as n  vertical reflections ! v . A special case is that of the C!v  group of 
heteronuclear diatomic molecules (e.g., CO). 

4. The groups Cnh . Each of these groups contains the elements of the corresponding Cn  
group, as well as a horizontal reflection ! h  and whatever other new operations 
brought about by its multiplication with the elements of Cn  (see the definition of a 
point group below). 

5. The groups Dn . Each of these groups contains the elements of the corresponding Cn  
group, as well as n  C2  rotations perpendicular to the n-fold  principal axis and 
whatever other new operations brought about by multiplications between these 
elements. 

6. The groups Dnh . Each of these groups contains the elements of the corresponding 
Dn  group, as well as a horizontal reflection ! h  and whatever other new operations 
brought about by multiplications between these elements. A special case is that of the 
D!h  group which includes homonuclear diatomic molecules. 

7. The groups Dnd . Each of these groups contains the elements of the corresponding 
Dn  group, as well as n  dihedral reflections ! d  and whatever other new operations 
brought about by multiplications between these elements. 

8. The groups Sn . These groups consist of the identity and an n-fold  improper rotation 
Sn , as well as whatever other new operations brought about by multiplications 
between these elements. Only even values of n  need to be considered, as a Sn  group 
with an odd n  is equivalent to the corresponding Cnh  group.  

9. The cubic and icosahedral groups. Each of these groups contains more than one 
n-fold  rotation with n ! 3 . The cubic groups are either tetrahedral (labeled T ) or 
octahedral (labeled O ). The point group Td  is that of the regular tetrahedron and of 
the methane molecule CH4 ; T  is the same group but without the reflections; Th  is a 
tetrahedral group with an inversion. The point group Oh  is that of the regular 
octahedron and of the sulphur hexafluoride molecule SF6 , for example; O  is the 
same group but without the reflections. The point group Ih  is that of the regular 
octahedron and of the buckminsterfullerene molecule C60 ; I  is the same group but 
without the inversion. 
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10. The full rotation group R3  or K . This group contains all the possible rotations (an 
infinite number of them) through any axis that passes through the centre of a 
molecule. It is also the symmetry group of the sphere. 

 
The point group of a given molecule will be determined by first identifying all of its 
symmetry operations, and then comparing against the list of known point groups. This 
will be easily accomplished with the help of the algorithm presented in Figure 5-2. Let us 
work out, for example, the point group of the H3

+  ion. Beside the identity element, this 
molecule possesses not only, as stated before, a C3  principal axis of symmetry with its 
associated C3  and C3

2  elements, three C2  rotations with their respective axis 
perpendicular to the principal axis of symmetry (and connecting the centre of symmetry 
to one hydrogen nucleus), but also three ! v  reflections (each associated with a plane 
containing a hydrogen nucleus), one horizontal reflection ! h , as well as two improper 
rotations S3  (= C3! h ). The point group of the H3

+  ion therefore consists of the following 
ensemble 
 
 point group of H3

+ = E,C3,C3
2 ,C2 , !C2 , !!C2 ," h ,S3,S3

2 ," v, !" v, !!" v{ }.  (5.2) 
  
Simply answering the questions contained in the chart of Figure 5-2 quickly reveals that 
the point group of this molecule is D3h . It is in principle possible to do the same for any 
molecule. One must, however, be careful that in certain cases some symmetry operations 
may not be obvious at first sight and could be omitted. It is often preferable to verify that 
the products of every pair of symmetry operations result in another operation also present 
in the ensemble. The reason for this becomes apparent when one considers the formal 
definition of a group; which we now do. 

5.2.1 The Definition of a Group 
Although we will postpone the study of the theory of groups to the next chapter, it will 
be to our advantage to introduce the concept of a mathematical group.  
A careful examination of the symmetry operations associated with the geometry of a 
given molecule would reveal that they fulfill the conditions set forth by the mathematical 
theory of groups, or group theory. That is, the set composed of all the symmetry 
operations of a molecule forms a group, in the mathematical sense. The formal definition 
of a group is as follows 

1. The identity E  is an operator of the set. 
2.  The operators multiply associatively; i.e., given three operators R, S  and T , then it 

is true that RS( )T = R ST( ) . 
3. If R and S  are two operators of the set, then RS  is also an operator contained in the 

set. 
4. The inverse of each operator is a member of the set. 
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Figure 5-2 – An algorithm to determine the point group of a molecule (from Atkins and 
Friedman). 
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For example, we can verify that the ensemble of equation (5.2) associated with the H3
+  

ion indeed satisfies these conditions. Although the first condition is obviously met, the 
second and third conditions can be verified more easily if we produce the so-called 
multiplication table for the group. This table is obtained by listing the results of every 
product between two operators of the group, as shown in Table 5-2. 

Table 5-2 – The multiplication table for the point group of the H3
+  ion (i.e., D3h ). The 

table is calculated by first applying the operator of the top row and then the operator of 
the left column.  

 E  C3  C3
2  C2  !C2  !!C2  ! h  S3  S3

2  ! v  !" v  !!" v  

E  E  C3  C3
2  C2  !C2  !!C2  ! h  S3  S3

2  ! v  !" v  !!" v  
C3  C3  C3

2  E  !!C2  C2  !C2  S3  S3
2  ! h  !!" v  ! v  !" v  

C3
2  C3

2  E  C3  !C2  !!C2  C2  S3
2  ! h  S3  !" v  !!" v  ! v  

C2  C2  !C2  !!C2  E  C3  C3
2  ! v  !" v  !!" v  ! h  S3  S3

2  
!C2  !C2  !!C2  C2  C3

2  E  C3  !" v  !!" v  ! v  S3
2  ! h  S3  

!!C2  !!C2  C2  !C2  C3  C3
2  E  !!" v  ! v  !" v  S3  S3

2  ! h  
! h  ! h  S3  S3

2  ! v  !" v  !!" v  E  C3  C3
2  C2  !C2  !!C2  

S3  S3  S3
2  ! h  !!" v  ! v  !" v  C3  C3

2  E  !!C2  C2  !C2  
S3
2  S3

2  ! h  S3  !" v  !!" v  ! v  C3
2  E  C3  !C2  !!C2  C2  

! v  ! v  !" v  !!" v  ! h  S3  S3
2  C2  !C2  !!C2  E  C3  C3

2  
!" v  !" v  !!" v  ! v  S3

2  ! h  S3  !C2  !!C2  C2  C3
2  E  C3  

!!" v  !!" v  ! v  !" v  S3  S3
2  ! h  !!C2  C2  !C2  C3  C3

2  E  
 
The fact that every cell in Table 5-2 contains an operator originally contained in the set 
tells us that condition 3 is indeed satisfied. Condition 2 can be verified using this same 
table. For example, let us consider the following operation 
 
 C3! v( )S32 = ""! v S3

2 = "C2 ,  (5.3) 
 
but since 
 
 C3 ! vS3

2( ) = C3 ""C2 = "C2 ,  (5.4) 
 
then C3! v( )S32 = C3 ! vS3

2( ) , as required. The same can be proved for any other 
association of three operators from the point group. The last condition concerning the 
existence of the inverse for every symmetry operation in the group can be asserted by the 
one-time appearance of the identity operation in every row and column. It is in fact 
possible to show that every operator of the group should appear once and only once in 
every row and column of the multiplication table. One last comment should be made 
concerning the results shown in Table 5-2. It is the fact that the different symmetry 
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operations are effected using space-fixed axes. That is, in the product, say, C2! v  the axes 
relative to which the molecule is oriented are not changed by the first operation (i.e., ! v ), 
only the orientation of the molecule in space is affected. Therefore, the following 
operation (i.e., ! v ) is also done with respect to the same set of axes. 

Finally, although we know from the chart of Figure 5-2 that linear molecules in their 
equilibrium configuration can either belong to the C!v  or D!h , it can also be shown that  

• A molecule with one, and only one, Cn -  or Sn -axis  with a finite n ! 3  is a 
symmetric top. 

• A molecule with more than one Cn -axis  with a finite n ! 3  is a spherical top. 
• A molecule with no rotational symmetry axis or only C2  axes only is an 

asymmetric top. 
 
It follows from these that the ammonia molecule NH3  (one C3-axis ), the methane 
molecule CH4  (four C3-axis ), and the water molecule (one C2 -axis ) are symmetric, 
spherical, and asymmetric tops, respectively. 
 


